
Abstract. We have implemented a parallel version of the
semiempirical divide and conquer program DivCon
previously developed in our laboratory. By utilizing a
parallel machine we are able to leverage the linear
scaling of the divide and conquer algorithm itself to
perform semiempirical calculations on large bio-mole-
cules. The utility of the implementation is demonstrated
with a partial geometry optimization of hen egg white
lysozyme in the gas phase.

Keywords: Parallel divide and conquer ± Parallel SCF

1 Introduction

Recently in our laboratory we implemented a divide and
conquer algorithm for semiempirical calculations in a
program called DivCon [1, 2]. This algorithm is based on
a variation of the density matrix divide and conquer
implementation of Yang and Lee [3]. Yang and cowork-
ers have also implemented a semiempirical divide and
conquer within the MOPAC program [4±6]. This
method overcomes the N3 time scaling of typical
semiempirical calculations by breaking a system into
smaller subsystems and solving a set of localized
equations for the subsystem. Using this algorithm,
semiempirical SCF calculations on large molecules can
be carried out with normal workstations in a reasonable
amount of time. Other approaches to linear scaling
semiempirical calculations, such as those of Stewart [7]
and Daniels et al. [8], have also been developed.

It is our goal in this work to leverage the linear scaling
ability of the density matrix divide and conquer algorithm
by implementing it in parallel. By doing so we hope to
reduce the time needed for semiempirical calculations to a
point where it is feasible to perform molecular dynamics
using a fully semiempirical Hamiltonian.

The parallel implementation has already been sug-
gested and outlined in Dixon and Merz [1]. Initial results

were reported there also. We have completed the work
and give full details of the implementation. Initial results
of a geometry optimization of hen egg white lysozyme
are presented to demonstrate the utility of the parallel
implementation.

2 Method

The partitioning scheme of the divide and conquer algorithm lends
itself naturally to a parallel implementation. In the divide and
conquer algorithm the entire system is split into many smaller
subsystems. It is this partitioning that allows the algorithm to
overcome the N3 scaling typically associated with semiempirical
calculations requiring diagonalization of the Fock matrix. This
same partitioning is used to implement the algorithm in parallel.
Individual subsystems are distributed across processors in a parallel
machine. In this manner the scaling of performance on a parallel
machine is limited only by the time required to diagonalize the
Fock matrix of the largest subsystem. Examples of this behavior are
given in the results section.

A replicated data strategy was used for the parallel implemen-
tation. We prefer this method because of its simplicity and ease of
implementation. Although replicated data implementations of
parallel programs normally do not scale very well to large numbers
of processors we ®nd this is not a hindrance since the majority of
our work is accomplished on a small number of processors, typi-
cally 64 or less. Currently it is much easier to obtain a small number
of processors at various supercomputing sites than an entire ma-
chine of say 512 processors. Because of this we try to optimize our
codes to run on the smaller number of nodes. In doing so we are
willing to make a tradeo� in scaling performance for ease of im-
plementation and maintenance. This allows us to make modi®ca-
tions and test new features more easily, while still getting excellent
performance in the way we normally use the program. Just over 100
lines of additional FORTRAN code were needed for the entire
parallel implementation, including robust error checking.

A more important limitation of the replicated data strategy is
available memory. Each processor must instantiate all variables of
the entire program. This limits the size of systems that can be used
to the size that will ®t on a single processor. The serial imple-
mentation of this algorithm is very memory e�cient and can ac-
commodate several thousand atom systems on a workstation with
only 32 Mb of memory. The cuto� employed in the divide and
conquer algorithm linearizes the storage requirements. Based on
these observations we anticipate being able to carry out calcula-
tions on systems of over 10 000 atoms on most parallel machines.
This exceeds our current needs. Memory requirements can be sig-
ni®cantly reduced by implementing some portions of the code in a
data parallel manner while still using the replicated data frame-Correspondence to: K.M. Merz, Jr.

Regular article

Parallel implementation of a divide
and conquer semiempirical algorithm

James J. Vincent, Steven L. Dixon, Kenneth M. Merz, Jr.

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

Received: 5 December 1997 /Accepted: 13 February 1998 / Published online: 17 June 1998

Theor Chem Acc (1998) 99:220±223
DOI 10.1007/s0021498000m6

work. Improvements in this area will be implemented in future
versions of the DivCon program as the need arises.

The main features of the parallel implementation are typical of
any replicated data program [9]. All processors read data from a ®le
at startup, initialize a variety of global variables locally, and exe-
cute all serial regions of the code redundantly. One processor is
named the master node and is responsible for all output. Com-
munication consists mainly of global sum operations. Several op-
erations, such as ®nding the global minimum and maximum of an
array, are carried out very e�ciently in parallel directly in a global
communication operation. The message passing interface (MPI)
was used for all communications [10]. The parallel version runs on
any machine with an MPI implementation available, including
networked workstations.

Two portions of the code were implemented in parallel;
building the Fock matrix, and diagonalizing the Fock matrix.
Creating the Fock matrix does not account for signi®cant time,
relative to diagonalization, in standard semiempirical calculations.
In the divide and conquer implementation diagonalization time
has been reduced such that creating the Fock matrix can require a
signi®cant percentage of the total computation time. Together
these two portions of the code account for 99% of total compu-
tation time on a serial machine. Note that even with a perfect
parallel implementation we can only expect a maximum speedup
of 100-fold.

The Fock matrix is created in parallel by distributing atoms
among processors in a cyclic fashion. No extra load balancing is
performed during this process. Each processor is responsible for all
matrix elements associated with a subset of atoms. The subset of
atoms assigned to a processor is not related to the subsystem
scheme employed by the divide and conquer algorithm. Since we
are using a replicated data strategy, every processor has equal
access to the full density matrix. A single communication scatters
the entire matrix to all processors.

Diagonalization of the Fock matrix is performed by solving a
localized set of Roothan-Hall equations for each subsystem. Dis-
tribution of this work by subsystems across processors allows a
larger granularity while still enabling e�ective load balancing. In
other parallel implementations of standard SCF calculations, di-
agonalization of the entire Fock matrix is carried out in parallel
[11±14]. Much research has been devoted to general methods for
parallel matrix diagonalizations due to their necessity in many
scienti®c programs [9]. In our implementation we avoid a parallel
diagonalization altogether by breaking the work up across pro-
cessors at a level above the diagonalization itself. Each processor
completes a diagonalization of the local Fock matrix for one or
more subsystems. An advantage of this method is that we can ex-
ploit the superior performance of native serial diagonalization
routines on many machines. The disadvantage is that parallel
speedup is limited by the single largest subsystem. This e�ect is
shown in the results section.

Load balancing of subsystems across processors is carried out
with a simple Greedy algorithm that uses the number of orbitals in
a subsystem and completion time per subsystem to balance the
work load e�ectively across processors [15]. The algorithm treats
subsystems as units of work of varying size and distributes them
across processors in such a way that each processor has an equal
share of the total work. The optimal load balance achieved is
normally not a perfect balance since most often the work cannot be
divided exactly among processors. In the limiting case a single
processor would be assigned one subsystem, the largest subsystem
in the calculation. A simpli®ed pseudo code algorithm is given
below.

Greedy load balancing:
sort subsystems in decreasing order
determine target solution
for i � 1, number_subsystems

for j � 1, number_pe's
if (FEASIBLE(my_solution,i)) then

my_solution � UNION(my_solution, i)
endif

end
end

The ®rst step of the algorithm sorts a list of all subsystems by
size, using either the number of orbitals in that subsystem, or the
completion time for diagonalization of the local Fock matrix. In
the second step a target solution based on the measurement used in
the ®rst step is computed. This is simply the total work to be per-
formed divided by the number of processors. For instance, if the
sum of completion times of all subsystems is 1000 s, then on 8
processors the target would be 1000/8. This is how much work each
processor should ideally be responsible for. In the loop that fol-
lows, subsystems are simply assigned to processors with the con-
dition that each processor must not exceed the target value when a
subsystem is assigned to it. The FEASIBLE routine checks this
condition. If FEASIBLE returns true the subsystem is added to
that processors pool of subsystems (UNION (my_solution, I)). If
not the next processor is checked. If all processors exceed the target
value the subsystem is assigned to the processor with the lowest
work total at that point.

The ®rst iteration of an SCF cycle uses the number of orbitals
in a subsystem for sorting and as the selection criterion in the
FEASIBLE routine. The second iteration uses actual completion
times. Subsystem distribution among processors is then left in this
balanced state until a new SCF cycle begins. Load balancing is
performed once in a single point calculation, and once at the start
of each new SCF cycle in a geometry optimization. During geom-
etry optimization subsystems can be regenerated. Any new distri-
bution of atoms among subsystems requires load balancing.

3 Results

We present performance results for several systems.
Timings for several systems are presented in Table 1.
Speedup as a function of the number of processors for
this data is given in Fig. 1. The limitation of the
implementation is clear in this graph. Bovine pancreatic
trypsin inhibitor (BPTI) shows near linear scaling until
16 processors. At that point the total speedup is limited
by the size of the largest single subsystem. One processor
is performing all calculations for the largest subsystem
and no matter how many processors are used the entire
calculation will not go faster. Because of this limitation
we compute maximum speedup possible based on
subsystem sizes within the program itself. This informa-
tion can then be used to choose an optimal number of
processors on a parallel machine.

The e�ectiveness of the Greedy load balancing algo-
rithm is shown in the three data sets in Fig. 2. Each bar-
graph set shows the total completion time for all work
for each of eight processors. The ®rst set shows com-
pletion times without load balancing. This demonstrates

Table 1 Completion times for single SCF cycles of several systems.
All timing values are wall times in s on a Cray T3 E for the ®rst
(two pass) SCF cycle using PM3. See [1] for two pass method.

Processors Water Boxa BPTIb Glycinec Lysozymed

1 837.28 10395.78 215.04 25109.32
2 421.52 5219.78 109.62 12597.23
4 214.37 2628.55 57.75 6352.96
8 110.68 1343.08 31.99 3224.80
16 59.16 742.07 19.37 1781.83
32 33.80 730.86 13.65 1035.86

aWater box: 216 waters in a rectilinear box, 648 atoms
bBPTI: bovine pancreatic trypsin inhibitor, 892 atoms
cGlycine: linear chain of 100 glycines, 703 atoms
dLysozyme: hen egg white lysozyme, 1960 atoms

221

the need for balancing and clearly shows performance
gains that can be made. The second set shows the
completion times for each processor using a cyclic load
balancer. In this algorithm subsystems are distributed to
processors in cyclic fashion until all subsystems have
been assigned to a processor. The balance achieved is
clearly better than no load balance, but there is still
room for improvement. Figure 3 shows completion
times across processors for the Greedy load balancing
algorithm. This provides the best results by giving the
optimal balancing solution for a set of subsystems and
processors. Note that in some instances the optimal so-
lution will not necessarily be a perfectly balanced solu-
tion. This behavior is evident in the timing data for BPTI
presented in Fig. 1. In this instance one processor is
assigned a single large subsystem that requires more time
than any of the other processors with their combined
subsystems. Since subsystems are not broken down
further this is the optimal solution.

A breakdown of times spent in various regions of the
code as a function of the number of processors is pre-
sented in Fig. 3. Even though we are using a replicated
data implementation that requires very large global
communication operations it is clear from this graph

that we are not limited by communication time. On 32
nodes of a Cray T3E diagonalization of individual
subsystems still accounts for 74% of total wall time.
Though serial regions of the code and communications
are not the limiting factor on 32 nodes, they are signi-
®cant enough to show that this implementation will not
scale well to very large numbers of processors.

4 Application

To demonstrate the utility of the parallel implementa-
tion we performed a geometry optimization of hen egg
white lysozyme, a protein with 1960 atoms, using 4963
basis functions. The protein was broken into 129
subsystems for the divide and conquer algorithm, giving
a maximum speedup of 26 based on the single largest
subsystem. Actual measured speedup for this system was
24 on 32 nodes of a Cray T3E. A total of 1023 geometry
optimization steps, requiring 2111 SCF cycles, were
completed. The gradient norm, shown in Fig. 4, was

Fig. 1. Parallel performance of the DivCon program

Fig. 2. E�ectiveness of di�erent load balancing schemes

Fig. 3. Breakdown of computation time for each region of code as
a function of processors used in parallel

Fig. 4. Gradient norm as a function of optimization step number
during geometry optimization of hen egg white lysozyme

222

reduced to 4.0 with an energy change between optimi-
zation steps of 0.0016 kcal. Converged SCF cycles
averaged 528 s (wall time). Complete optimization
required 13.4 days of CPU time on 32 nodes. To
complete this optimization on a single processor work-
station with the same performance as one T3 E node
would require approximately 1 year of CPU time.

Conclusions

Our parallel implementation of the semiempirical divide
and conquer algorithm allows us to leverage the serial
linear scaling performance of the algorithm on parallel
supercomputers. This in turn will allow us to carry out
studies on large systems which were previously prohib-
itively expensive. We have demonstrated this ability with
a geometry optimization of the protein, hen egg white
lysozyme.

The performance of our algorithm is achieved
through a balance of parallel optimization and main-
tainability. We have purposely chosen a very minimal
implementation to enable easy modi®cation and main-
tenance of the program. In most cases the implementa-
tion scales well on small numbers of nodes. We have
demonstrated this with a 24-fold speedup on 32 nodes
for the lysozyme.

Ongoing work in our laboratory includes the incor-
poration of periodic boundary conditions, particle mesh
Ewald summation for long-range Coulombic interac-
tions, and improved subsetting schemes into the divide
and conquer program. Due to the simplicity of the
parallel implementation these features and others can be

developed without rewriting the parallel regions of the
code. In addition, current work is under way to imple-
ment a coupled potential version of the molecular
dynamics program ROAR [16] using DivCon.

Acknowledgments. This work was funded by the National Science
Foundation Graduate Research Traineeship program for High
Performance Computing. Computer time was granted through the
National Science Foundation Meta-Centers.

References

1. Dixon SL, Merz KM Jr (1997) J Chem Phys 107:879
2. Dixon SL (1996) J Comp Chem 104:6643
3. Yang W, Lee TS (1995) J Chem Phys 103:5674
4. York DM, Lee TS, Yang W (1996) J Am Chem Soc 118:10940
5. York DM, Lee TS, Yang W (1996) Chem Phys Lett 263:297
6. Lee TS, York DM, Yang W (1996) J Chem Phys 105:2744
7. Stewart JJJP (1996) Int J Quantum Chem 58:133
8. Daniels AD, Millam JM, Scuseria GE (1997) J Chem Phys
107:425

9. Foster I (1995) Designing and building parallel programs:
concepts and tools for parallel software engineering. Addison-
Wesley, Reading, Mass.

10. MPI Forum (1993) University of Tennessee, Knoxville, Tenn.
11. Brode S, Horn H, Ehrig M, Moldrup D, Rice JE, Ahlrichs R

(1993) J Comp Chem 14:1142
12. Feyereisen M, Kendall RA (1993) Theor Chim Acta 84:289
13. Pettersson LGM, Faxen T (1993) Theor Chim Acta 85:345
14. Furlani TR, King HF (1995) J Comp Chem 16:91
15. Horowitz E, Sahni S (1978) Fundamentals of computer

algorithms. Computer Science Press, Polomac, MD
16. Merz KM Jr, Cheng A, Damodaran K, Stanton RV, Vincent JJ

(1997) ROAR 1.0. Oxford Molecular, Oxford

223

